Consistent Partial Least Squares Path Modeling via Regularization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Consistent Partial Least Squares Path Modeling via Regularization

Partial least squares (PLS) path modeling is a component-based structural equation modeling that has been adopted in social and psychological research due to its data-analytic capability and flexibility. A recent methodological advance is consistent PLS (PLSc), designed to produce consistent estimates of path coefficients in structural models involving common factors. In practice, however, PLSc...

متن کامل

Consistent Partial Least Squares Path Modeling

This paper resumes the discussion in information systems research on the use of partial least squares (PLS) path modeling and shows that the inconsistency of PLS path coefficient estimates in the case of reflective measurement can have adverse consequences for hypothesis testing. To remedy this, the study introduces a vital extension of PLS: consistent PLS (PLSc). PLSc provides a correction for...

متن کامل

Reflections on Partial Least Squares Path Modeling

The purpose of the present article is to take stock of a recent exchange in Organizational Research Methods between critics and proponents of partial least squares path modeling (PLS-PM). The two target articles were centered around six principal issues, namely whether PLS-PM: (a) can be truly characterized as a technique for structural equation modeling (SEM), (b) is able to correct for measur...

متن کامل

How to Address Endogeneity in Partial Least Squares Path Modeling

Some of the models using partial least squares (PLS) in Information Systems (IS) field may have serious problems because do not properly address endogeneity. This may suppose a problem in IS theory building because it may lead IS scholars to non-correct results. Although the IS community’s awareness is rising, we do not have a clear understanding of the problem nor fine-grained practical guidel...

متن کامل

Predictive model selection in partial least squares path modeling

Predictive model selection metrics are used to select models with the highest out-of-sample predictive power among a set of models. R 2 and related metrics, which are heavily used in partial least squares path modeling, are often mistaken as predictive metrics. We introduce information theoretic model selection criteria that are designed for out-of-sample prediction and which do not require cre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Psychology

سال: 2018

ISSN: 1664-1078

DOI: 10.3389/fpsyg.2018.00174